Abstract Submitted for the APR13 Meeting of The American Physical Society

Neutron-capture cross-section measurements of 40 Ar and 136 Xe in the energy region 0.7-14.8 MeV MEGHA BHIKE, WERNER TORNOW, Department of Physics/TUNL, Duke University — Cross-section measurements for the reaction 40 Ar(n, γ) 41 Ar have been carried out with the activation method in the neutron energy region 0.7-14.8 MeV. These results are important to identify backgrounds in liquid argon based neutrino detectors and in the neutrinoless double- β decay experiment GERDA, which uses argon as cooling and shielding medium. A high-pressure gas cell of 40 Ar was irradiated with monoenergetic neutrons produced either by the 3 H(p,n) 3 He, 2 H(d,n) 3 He or 3 H(d,n) 4 He reactions. Indium and Au monitor foils were irradiated simultaneously to determine the incident neutron flux. The activities induced by the reaction products were measured using high-resolution γ -ray spectroscopy. The data are compared with the available data evaluations. Measurements of the 136 Xe(n, γ) 137 Xe cross section are underway and preliminary results will be presented as well. The latter data are important for the EXO and KamLAND-Zen neutrinoless double- β decay searches.

Megha Bhike Department of Physics/TUNL, Duke University

Date submitted: 10 Jan 2013 Electronic form version 1.4