Abstract Submitted for the APR13 Meeting of The American Physical Society

Direct Observation of a New $J^{\pi} = 2^+$ State in ¹²C through the ¹²C + $\gamma \rightarrow 3\alpha$ Reaction¹ W.R. ZIMMERMAN, M.W. AHMED, S.S. HENSHAW, I. MAZUMDAR, J.M. MUELLER, L.S. MYERS, M.H. SIKORA, S. STAVE, H.R. WELLER, Triangle Universities Nuclear Laboratory, M. GAI, Laboratory for Nuclear Science at Avery Point — The second $J^{\pi} = 2^+$ state in ¹²C, predicted over fifty years ago to exist as an excitation of the Hoyle state, has been unambiguously identified in the ¹²C(γ, α)⁸Be reaction. The α particles produced by the photodisintegration of ¹²C were detected using an optical time projection chamber. Initial data were collected at beam energies between 9.1 and 10.7 MeV using intense, nearly monoenergetic γ -ray beams available at the HI γ S facility. The measured cross sections and angular distributions unambiguously establish the existence of a broad 2⁺ state near 10 MeV in ¹²C. Additional data were recently taken at beam energies of up to 11.2 MeV and show no evidence for an additional 2⁺ state previously reported to exist near 11 MeV [1].

[1] F. Ajzenberg-Selove, Nucl. Phys. A506, 1 (1990).

¹Supported in part by U.S. Department of Energy, grant numbers DE-FG02-97ER41033 and DE-FG02-94ER40870.

> W.R. Zimmerman TUNL

Date submitted: 11 Jan 2013

Electronic form version 1.4