Abstract Submitted for the APR13 Meeting of The American Physical Society

 $2\nu\beta\beta$ of $^{96}{
m Zr}$ to the First Excited 0^+ State SEAN FINCH, WERNER TORNOW, Duke University and TUNL — A progress report is presented on our work to measure the double-beta decay of $^{96}{
m Zr}$ to the first excited 0^+ state of $^{96}{
m Mo}$. Such measurements provide valuable test cases for $2\nu\beta\beta$ nuclear matrix element calculations, which in turn are used to tune $0\nu\beta\beta$ nuclear matrix element calculations. After undergoing double-beta decay, the excited 0^+ state decays via the $0^+ \to 2^+ \to 0^+$ decay sequence in the daughter nucleus, emitting two coincident γ rays. These two γ rays are detected in coincidence by two HPGe detectors sandwiching the $^{96}{
m Zr}$ sample, with a NaI veto in anti-coincidence. This experimental apparatus, located at the Kimballton Underground Research Facility (KURF), has previously been used to measure the $T_{1/2}$ of $^{100}{
m Mo}$ and $^{150}{
m Nd}$ to the first excited 0^+ states. The present experiment is an attempt to detect this decay mode in a third nuclide. The experiment is hindered by our small sample mass of 17.9 grams of enriched $^{96}{
m Zr}$, which has a natural abundance 2.8%. Preliminary results will be shown.

Sean Finch Duke University

Date submitted: 11 Jan 2013 Electronic form version 1.4