Abstract Submitted for the APR13 Meeting of The American Physical Society

Effects of Odd-Z Projectiles on Fusion-Evaporation Cross Sections TYLER WERKE, DMITRIY MAYOROV, MARISA ALFONSO, Cylotron Institute and Department of Chemistry, Texas A&M University, MEGAN BEN-NETT, Cyclotron Institute, Texas A&M University, MICHAEL DEVANZO, Cyclotron Institute, Texas A&M University and Department of Physics, Astronomy, and Geosciences, Towson University, CHARLES FOLDEN III, Cyclotron Institute, Texas A&M University — The production of nuclides near the N=126 shell in the $^{45}\mathrm{Sc}$ + $^{159}\mathrm{Tb}$, $^{162}\mathrm{Dy}$ reactions has been studied at Texas A&M University using the MARS spectrometer. Previously measured 4n exit channel cross sections for the ⁴⁸Ca, ⁵⁰Ti + ¹⁵⁹Tb and ⁴⁸Ca + ¹⁶²Dy reactions have exhibited enhanced fission probabilities in the de-excitation of the compound nucleus due to collective enhancements to the fission level density. The current research intends to study the change in the evaporation residue cross sections when odd-Z projectiles react with the same targets. The maximum 4n cross sections of the ⁴⁵Sc + ¹⁵⁹Tb, ¹⁶²Dy reactions were $2 \mu b$, and $4 \mu b$ respectively, and these data are several orders of magnitude smaller than both theoretical predictions and the experimental data for the 48 Ca and 50 Ti reactions discussed above. This can be explained by collective enhancements as well as the relative neutron deficiency of ⁴⁵Sc compared to ⁴⁸Ca and ⁵⁰Ti. This talk will discuss theoretical models of evaporation residue cross sections, and will discuss the latest results on excitation functions for odd-Z projectiles reacting with lanthanide targets. This work may also have relevance to the production of superheavy elements with Z > 118.

Tyler Werke Cylotron Institute and Department of Chemistry, Texas A&M University

Date submitted: 14 Jan 2013 Electronic form version 1.4