Abstract Submitted for the APR13 Meeting of The American Physical Society

Universality and the matter radius of Carbon- 22^1 DANIEL PHILLIPS, BIJAYA ACHARYA, Ohio University, CHEN JI, TRIUMF, Vancouver, Canada — Recently, Tanaka et al. measured the matter radius of 22 C to be $\langle r_m^2 \rangle^{1/2} = 5.4 \pm 0.9$ fm. This suggests that ²²C is an s-wave two-neutron halo, with the two neutrons orbiting a ²⁰C core. We address this finding using an effective field theory (EFT) that employs core and neutron degrees of freedom and is designed for systems with a large two-body scattering length. This EFT enables the derivation of universal predictions for three-body systems which are built on such two-body interactions and have a large matter radius. We show that, at leading order in the EFT, the matter radius of any s-wave two-neutron halo is given by a function of the neutron-core scattering length and the halo nucleus' two-neutron separation energy. We display this function and discuss its general properties. Specializing to the case of 22 C, we use our general function, together with the datum of Tanaka et al., to set limits on the binding energy of ²²C for different values of the ²¹C resonance energy. Our analysis includes a consideration of the higher-order corrections in the EFT, allowing us to set an upper bound on the 22 C binding energy which includes both these uncertainties and those in the original measurement.

¹Research supported by the US Department of Energy and NSERC

Daniel Phillips Ohio University

Date submitted: 11 Jan 2013

Electronic form version 1.4