Three-body photodisintegration of 3He using a longitudinally polarized target and a circularly polarized γ beam at 12.8 and 14.7 MeV1 GEORGIOS LASKARIS, Triangle Universities Nuclear Laboratory and Physics Department of Duke University, POLARIZED 3HE COLLABORATION AT HIGS/TUNL TEAM — We report on the first measurement of the three-body photodisintegration of longitudinally polarized 3He using a circularly polarized γ-ray beam at incident photon energies 12.8 MeV and 14.7 MeV. The experiment was carried out at the High Intensity γ-ray Source facility located at the Triangle Universities Nuclear Laboratory. A high-pressure 3He target, polarized via spin exchange optical pumping with alkali metals, was employed. The neutrons from the three-body photo-disintegration were detected using ten liquid scintillators positioned in the reaction plane at five different angles between 75° and 165°. Results on the spin-dependent double- and single- differential cross sections, the spin-dependent total cross sections, as well as the asymmetries will be presented and compared with the state-of-the-art three-body calculations for both energies. The first data points below pion production threshold of the three-body photodisintegration part of the GDH sum rule integrand will be also presented. Contributions from three-body photodisintegration at the photon energies of this work to the 3He GDH integrand below the pion production threshold will also be presented for the first time.

1The work is supported by DOE under DE-FG02-03ER41231, DE-FG02-97ER41033, DE-FG02- 97ER41041 and the PNSC under DEC-2011/01/B/ST2/00578.