Probing the Spin Structure of the Nucleon: New Experimental Results on d_2 and A_1 for both Neutron and Proton from JLab
BRAD SAWATZKY, Jefferson Lab

The last several years of Jefferson Lab’s 6 GeV physics program saw a wealth of nucleon spin structure measurements run across several Halls. In particular, E06-014 (“d_2^m”) in Hall A (polarized neutron), and E07-003 (“SANE”) in Hall C (polarized proton) took advantage of significant advances in target design and new/upgraded large solid angle detector packages to run precision measurements of neutron and proton spin structure functions over the region $0.2 < x < 0.8$ and $2.5 < Q^2 < 6.5\,\text{GeV}^2/c^2$. Of note, the SSF g_2 and associated higher twist reduced matrix element d_2 are fundamentally coupled to the quark-gluon interactions and transverse momentum of the quarks in the nucleon, and are among the cleanest higher twist observables we can access. New data on g_1, g_2, spin asymmetries A_1 and A_2, and the d_2 moment for both the neutron and proton will be presented, and future measurements that exploit JLab’s 12 GeV upgrade will be touched on.