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An Introduction to Neutrosophic Measure FLORENTIN SMARAN-
DACHE, University of Mew Mexico — We introduce for the first time the scientific
notion of neutrosophic measure. LetXbe a neutrosophic set, and Σ a σ-neutrosophic
algebra over X. A neutrosophic measure ν is defined by ν : X → R2, where ν is
a function that satisfies the following properties: Null empty set:ν (Φ) = (0, 0) and
Countable additivity (or σ-additivity): For all countable collections {An}n∈L of dis-
joint neutrosophic sets in Σ, one has:
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ν (A) = (measure (determpart of A) , measure (indetermpart of A))

The neutrosophic measure is practically a double classical measure: a classical mea-
sure of the determinate part of a neutrosophic object, and another classical measure
of the indeterminate part of the same neutrosophic object. Of course, if the inde-
terminate part does not exist (or its measure is zero), the neutrosophic measure is
reduced to the classical measure. An approximate number N can be interpreted as
a neutrosophic measure N = d+ i, where d is its determinate part and i its indeter-
minate part. For example if we don’t know exactly a quantity q, but only that it is
between let’s say q ∈ [0.8, 0.9], then q = 0.8 + i, where 0.8 is the determinate part
of q, and its indeterminate part i ∈ [0, 0.1].
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