Charge States of 229mTh: Path to Finding the Half-Life1 MOLLY WAKELING, Washington State University, JASON BURKE, Lawrence Livermore National Laboratory, TIMOTHY CORDEIRO, United States Air Force Academy, GRANT SALK, Rochester Institute of Technology — 229Th nuclei created from the alpha decay of 233U were studied using the Time of Flight (TOF) technique by measuring the time difference between alpha particle detection by a silicon detector and 229Th recoil nuclei detection by a multi-channel plate detector (MCP). The experiments proved that the recoiling 229Th nuclei were produced in the 1+ and greater charge states. This implies that 229mTh will decay by bound internal conversion, emitting photons that can be detected to measure the half-life of this isomeric state, which is currently unknown. The charge states were observed by measuring the TOF of nuclei coming from an electroplated 233U (0.2 μCi, areal density 0.006 mg/cm2) source in vacuum.

1This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.