Abstract Submitted for the APR14 Meeting of The American Physical Society

Charge States of ^{229m}Th: Path to Finding the Half-Life¹ MOLLY WAKELING, Washington State University, JASON BURKE, Lawrence Livermore National Laboratory, TIMOTHY CORDEIRO, United States Air Force Academy, GRANT SALK, Rochester Institute of Technology — ²²⁹Th nuclei created from the alpha decay of ²³³U were studied using the Time of Flight (TOF) technique by measuring the time difference between alpha particle detection by a silicon detector and ²²⁹Th recoil nuclei detection by a multi-channel plate detector (MCP). The experiments proved that the recoiling ²²⁹Th nuclei were produced in the 1+ and greater charge states. This implies that ^{229m}Th will decay by bound internal conversion, emitting photons that can be detected to measure the half-life of this isomeric state, which is currently unknown. The charge states were observed by measuring the TOF of nuclei coming from an electroplated ²³³U (0.2 μ Ci, areal density 0.006 mg/cm²) source in vacuum.

¹This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

> Molly Wakeling Washington State University

Date submitted: 01 Dec 2013

Electronic form version 1.4