Determining the equation of state via microscopic simulations

ALEXANDROS GEZERLIS, Univ of Guelph

I will provide an overview of the status of modern nuclear theory, especially in connection with the determination of the equation of state of nucleonic matter. I will also discuss the relevance of microscopic simulations to the study of strongly interacting nucleons. Starting with some general points on the underlying theory of Quantum Chromodynamics (QCD), I will then go over the efforts toward connecting QCD with many-nucleon studies (via chiral Effective Field Theory [EFT]). I will also introduce a recent local reformulation of chiral EFT, which makes it possible to use such modern potentials within the framework of Quantum Monte Carlo (an essentially exact type of microscopic simulation method).

1Work supported in part by NSERC Discovery Grant “Strong Interactions In Nuclear Physics.”