Deeply virtual Compton scattering on longitudinally polarized protons at CLAS ANGELA BISELLI, Fairfield Univ, CLAS COLLABORATION — The Generalized Parton Distributions (GPDs) have emerged as a universal tool to describe hadrons in terms of their elementary constituents, the quarks and the gluons. Deeply Virtual Compton Scattering (DVCS) \((ep \rightarrow e'p'\gamma)\) is one of the simplest processes that can be described in terms of GPDs. The DVCS-Bethe-Heitler (BH) interference gives rise to spin asymmetries, which can be connected to combinations of Compton Form Factors (CFFs), which are integrals of GPDs. The longitudinal target single-spin asymmetry (SSA) is directly proportional to the imaginary part of the DVCS amplitude, and gives access to a combination of the CFFs \(Im(\tilde{H})\) and \(Im(\tilde{\mathcal{H}})\), whereas the double-spin asymmetry (DSA) is proportional to a combination of the CFFs of \(Re(\tilde{H})\) and \(Re(\tilde{\mathcal{H}})\). These asymmetries were measured in a dedicated experiment at Jefferson Lab using the CEBAF 6-GeV polarized-electron beam, a longitudinally polarized solid-state \(^{14}\text{NH}_3\) target, and the CEBAF Large Acceptance Spectrometer, together with the Inner Calorimeter. DVCS/BH events were selected over the following kinematic ranges: \(1 < Q^2 < 4.5\ \text{GeV}^2\), \(0.1 < x_B < 0.58\), \(0.08 < -t < 1.8\ \text{GeV}^2\) and, the target-SSA and DSA were