Abstract Submitted for the APR14 Meeting of The American Physical Society

Relic neutrinos: Physically consistent treatment of effective number of neutrinos and neutrino mass¹ JEREMIAH BIRRELL, Progam in Applied Mathematics, University of Arizona, JOHANN RAFELSKI, Department of Physics, University of Arizona — It is well known that the effective number of cosmic neutrinos, N_{ν} , is larger than the standard model number of neutrino flavors $N_{\nu}^{f} = 3$ due a small flow of entropy into neutrinos from $e \pm$ annihilation. Observational bounds from both BBN and the CMB suggest a value of N_{ν} that is larger than the current theoretical prediction of $N_{\nu} = 3.046$. We show in a model independent way how N_{ν} relates to the neutrino kinetic freeze-out temperature, T_k , which we treat as parameter. We derive the relations that must hold between N_{ν} , the photon to neutrino temperature ratio, the neutrino fugacity, and T_k . Our results imply that measurement of neutrino reheating, as characterized by N_{ν} , amounts to the determination of T_k . We follow the free streaming neutrinos down to a temperature on the order of the neutrino mass and determine how the cosmic neutrino properties i.e. energy density, pressure, particle density, depend in a physically consistent way on both neutrino mass and N_{ν} . We continue down to the present day temperature and characterize the neutrino distribution in this regime as well. See arXiv:1212.6943, PRD in press.

¹This work has been supported by a grant from the U.S. Department of Energy, No. DE-FG02-04ER41318 and by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

> Jeremiah Birrell University of Arizona

Date submitted: 10 Jan 2014

Electronic form version 1.4