Abstract Submitted for the APR14 Meeting of The American Physical Society

New Decay Studies of 66 Ga SURESH KUMAR, University of Delhi, India and Argonne National Laboratory, I. AHMAD, M.P. CARPENTER, J. CHEN, J.P. GREENE, F.G. KONDEV, S. ZHU, Argonne National Laboratory — Highenergy γ rays with energies up to 5.0 MeV are emitted in the radioactive decay of 66 Ga ($T_{1/2}$ =9.49 h). Thus, this radionuclide appears to be a suitable candidate for energy and efficiency calibrations of high-resolution, γ -ray spectrometers that are employed in studies of very neutron-rich nuclei which have large Q_{β} values. In addition, accurate emission probabilities of this isotope are of interest to medical imaging applications, owing to the existence of large β^+ decay branches, which need to be characterized with better accuracy. Decay studies of 66 Ga were initiated using the γ -ray spectroscopy technique. The source was produced by means of the 66 Zn(p,n) reaction at a beam energy of 12 MeV. Singles and $\gamma - \gamma$ coincidences measurements were carried out using a single Ge detector and Gammasphere, respectively. The previously known 66 Ga decay scheme was extended and many new γ rays were placed in the daughter nuclide 66 Zn.

The work at ANL was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. S. Kumar acknowledges support from the Indo-US Science and Technology Forum for the award of a Research Fellowship.

Filip Kondev Argonne National Laboratory

Date submitted: 10 Jan 2014 Electronic form version 1.4