Abstract Submitted for the APR14 Meeting of The American Physical Society

 ${}_{\Lambda}^{7}$ He bound state within three-body approach¹ VLADIMIR SUSLOV, IGOR FILIKHIN, BRANISLAV VLAHOVIC, North Carolina Central University — The ${}_{\Lambda}^{7}$ He hypernucleus is studied within the cluster model ${}_{\Lambda}^{5}$ He + n + n, using configuration space Faddeev formalism. Intrinsic structure of the core nucleus is taken into account by the folding procedure applied to construct the ${}_{\Lambda}^{5}$ He – n interaction. The OBE simulating potential of the NSC97f model for An and phenomenological $\alpha\Lambda$ potential are used. Singlet and triplet components of the folding potential are adjusted to reproduce the 2⁻ excitation energy $E_x({}_{\Lambda}^{6}$ He) of the ${}_{\Lambda}^{6}$ He hypernucleus. A correlation between $E_x({}_{\Lambda}^{6}$ He) and hyperon binding energy $B_{\Lambda}({}_{\Lambda}^{7}$ He) of ${}_{\Lambda}^{7}$ He is established. We use this correlation to evaluate $B_{\Lambda}({}_{\Lambda}^{7}$ He) taking into account results of our calculation for $E_x({}_{\Lambda}^{6}$ He) within the three-body model $\alpha + \Lambda + n$. The value obtained for $E_x({}_{\Lambda}^{6}$ He) is 0.18 MeV. With this value our evaluation for $B_{\Lambda}({}_{\Lambda}^{7}$ He) yields 5.69 MeV, which is close to the recently reported experimental data (5.68 MeV).

¹This work is supported by NSF CREST (HRD-0833184) and NASA (NNX09AV07A)

Vladimir Suslov North carolina Central University

Date submitted: 10 Jan 2014

Electronic form version 1.4