Abstract Submitted for the APR15 Meeting of The American Physical Society

The Electron is a Charged Photon RICHARD GAUTHIER¹, Santa Rosa Junior College — The Dirac equation's relativistic electron is modeled as a helically-circulating charged photon whose helical radius at low electron speeds is the Dirac equation's electron amplitude hbar/2mc. The helically-circulating charged photon's longitudinal or z-component of velocity equals the velocity of the electron. The electron's relativistic energy-momentum equation $E^2 = p^2 c^2 + m^2 c^4$ corresponds the helically-circulating charged photon's energy $E = \gamma mc^2 = h\nu$ with the charged photon's total momentum $p_{total} = \gamma mc$, its longitudinal momentum component $p = \gamma mv$ (the electron's linear momentum) and its transverse momentum component $p_{trans} = mc$. The charged photon's circulating transverse momentum component $p_{trans} = mc$, acting at the charged photon's helical radius hbar/2mc, generates the spin-up and spin-down z-components $\pm hbar/2$ of a slowly-moving electron's spin. The relativistic de Broglie wavelength $h/\gamma mv$ of the electron is easily calculated from the longitudinal component of the circulating charged-photon's wave vector \vec{k} .

¹www.superluminalquantum.org

Richard Gauthier Santa Rosa Junior College

Date submitted: 29 Dec 2014

Electronic form version 1.4