Generic, Long, High Mass Ratio Binary Black Hole Inspiral Simulations AARON ZIMMERMAN, ADAM LEWIS, HARALD PFEIFFER, CIT, SXS COLLABORATION — We present for the first time high mass ratio \((q = 5\) and \(q = 7)\), long \((40 - 50\) pericenter passages), eccentric and precessing binary black hole inspirals. These inspirals are well suited for comparison to both analytic Post-Newtonian theory and to the motion of a small mass around a central black hole with gravitational self-force corrections. We discuss the properties of these inspirals, our initial comparisons, and future directions.

Aaron Zimmerman
CITA

Date submitted: 06 Jan 2015

Electronic form version 1.4