A Cryogenic Target for Compton Scattering Experiments at HI\textgamma S

DAVID KENDELLEN, MOHAMMAD AHMED, HENRY WELLER, Triangle Universities Nuclear Laboratory, GERALD FELDMAN, George Washington University — We have designed, constructed, and tested a cryogenic target for use at the High Intensity γ-ray Source (HI\textgamma S). The target is able to liquefy helium (LHe), hydrogen (LH$_2$), and deuterium (LD$_2$). It precools room-temperature gas in two stages with a Gifford-McMahon cryocooler. The precooled gas condenses onto a series of copper fins and drips down to fill a 0.25 L Kapton target cell. The cryotarget will be used to measure nuclear and nucleon electromagnetic polarizabilities. The electromagnetic polarizabilities of the nucleons, α and β, will be probed by scattering a γ-ray beam on unpolarized LD$_2$ and LH$_2$ targets. Scattered photons will be detected by the HI\textgamma S NaI Detector Array (HINDA). We have tested the target with LHe at 3 K and are preparing for LD$_2$ testing and production running.

1Work supported by US Department of Energy contracts DE-FG02-97ER41033, DE-FG02-06ER41422, and DE-SC000536

David Kendellen
Triangle Universities Nuclear Laboratory

Date submitted: 07 Jan 2015 Electronic form version 1.4