Abstract Submitted for the APR15 Meeting of The American Physical Society

A Cryogenic Target for Compton Scattering Experiments at $HI\gamma S^1$ DAVID KENDELLEN, MOHAMMAD AHMED, HENRY WELLER, Triangle Universities Nuclear Laboratory, GERALD FELDMAN, George Washington University — We have designed, constructed, and tested a cryogenic target for use at the High Intensity γ -ray Source ($HI\gamma S$). The target is able to liquefy helium (LHe), hydrogen (LH₂), and deuterium (LD₂). It precools room-temperature gas in two stages with a Gifford-McMahon cryocooler. The precooled gas condenses onto a series of copper fins and drips down to fill a 0.25 L Kapton target cell. The cryotarget will be used to measure nuclear and nucleon electromagnetic polarizabilities. The electromagnetic polarizabilities of the nucleons, α and β , will be probed by scattering a γ -ray beam on unpolarized LD₂ and LH₂ targets. Scattered photons will be detected by the $HI\gamma S$ NaI Detector Array (HINDA). We have tested the target with LHe at 3 K and are preparing for LD₂ testing and production running.

¹Work supported by US Department of Energy contracts DE-FG02-97ER41033, DE-FG02-06ER41422, and DE-SCOO0536

David Kendellen Triangle Universities Nuclear Laboratory

Date submitted: 07 Jan 2015 Electronic form version 1.4