Alpha Emission in the De-excitation of 30Si Nuclei at $E^* = 30$ to 38 MeV1 JUSTIN VADAS, TRACY STEINBACH, JON SCHMIDT, VARINDER-JIT SINGH, SYL Vie HUDAN, ROMUALDO DESOUZA, Indiana University, LAGI BABY, SEAN KUVIN, INGO WIEDEHHOVER, Florida State University — Compound nuclei produced in low-energy fusion reactions de-excite via emission of neutrons, protons, and alpha particles. Although the statistical model has been successful in describing this de-excitation for heavy nuclei, its applicability for light nuclei, particularly at low excitation is questionable. Understanding the de-excitation modes of such light nuclei is of significant importance as they play a role in stellar nucleosynthesis. To investigate this topic we have measured the alpha particles emitted in the de-excitation of the 30Si nucleus produced by fusion of 18O ions with 12C target nuclei. Both the alpha particles and the coincident evaporation residues were identified by utilizing the energy versus time-of-flight method. The energy spectra and angular distributions of the residues reveal that alpha emission plays a significant role in the de-excitation of the compound nucleus. Comparison of the residue angular distributions and alpha particle yields and energy spectra with a statistical model shows that alpha emission is significantly under-predicted by the model. The details of this comparison and its possible implications will be presented.

1Supported by DOE Grant No. DE-FG02-88ER-40404