Anisotropic Jet Quenching in semi-Quark-Gluon Plasmas with Magnetic Monopoles JIECHEN XU, Columbia University, JINFENG LIAO, Indiana University, MIKLOS GYULASSY, Columbia University — We present a new jet quenching framework, CUJET3.0, that is shown to simultaneously account for both the high \(p_T \) single inclusive hadron suppression \(R_{AA} \) and its azimuthal anisotropy \(v_2 \) in heavy ion collisions at both RHIC and LHC energies. CUJET3.0 generalizes our previous pQCD/HTL based CUJET2.0 model that couples running coupling DGLV jet energy loss to (2+1)D viscous hydrodynamic fluids, and it includes two new nonperturbative effects in the QCD transition temperature range \(T \sim 140 - 250 \) MeV: (1) the Polyakov loop suppression of color-electric scattering (aka “semi-QGP” of Pisarski et al) and (2) the enhancement of scattering due to emergent magnetic monopoles near \(T_c \) (aka “magnetic scenario” of Liao and Shuryak). The parameters of the model are constrained by lattice QCD data. We find that the CUJET3.0 jet transport coefficient \(\hat{q}(E,T)/T^3 \) peaks near \(T_c \) by a factor \(\sim 4 \) above previous perturbative pQCD/HTL estimates, approaching hybrid AdS/SYM holography of Liu et al, but it has very strong nonconformal \(E \) and \(T \) dependence up to \(T \sim 400 \) MeV. Extrapolating down to \(E = 2 \) GeV, we find a striking new connection between bulk perfect fluidity with \(\eta/s \sim 0.1 \) near \(T_c \) and high \(p_T \) high \(T \) perturbative jet quenching.

Jiechen Xu
Columbia University

Date submitted: 09 Jan 2015

Electronic form version 1.4