The $^3\text{H}(d,\gamma)^5\text{He}$ Reaction at $E_{\text{c.m.}} \leq 300$ keV

C.E. PARKER, C.R. BRUNE, T.N. MASSEY, J.E. O’DONNELL, A.L. RICHARD, D.B. SAYRE, Ohio University — The $^3\text{H}(d,\gamma)^5\text{He}$ reaction has been measured using a 500-keV pulsed deuteron beam incident on a stopping titanium tritide target at the Edwards Accelerator Laboratory. The time-of-flight technique has been used to distinguish the γ-rays from neutrons in the bismuth germinate (BGO) γ-ray detector. A stilbene scintillator and an NE-213 scintillator have been used to detect the neutrons from the $^3\text{H}(d,n)^4\text{He}$ reaction using both the pulse-shape discrimination and time-of-flight techniques. A newly designed target holder with a silicon surface barrier detector to simultaneously measure α-particles to normalize the number of neutrons, along with a new titanium tritide target, was incorporated for subsequent measurements. The γ-rays have been measured at laboratory angles of 0°, 45°, 90°, and 135°. Information about the γ-ray energy distribution for the unbound ground state and first excited state of ^5He can be obtained experimentally by comparing the BGO data to Monte Carlo simulations. The $^3\text{H}(d,\gamma)/^3\text{H}(d,n)$ branching ratio has also been measured. Data analysis is currently underway for the subsequent measurements.

1This work is supported in part by Lawrence Livermore National Laboratory and the U.S. D.O.E. (NNSA) through grant No. DE-NA0001837.
2deceased
3presently at Lawrence Livermore National Laboratory

Cody E. Parker
Ohio University

Date submitted: 09 Jan 2015

Electronic form version 1.4