Abstract Submitted for the APR15 Meeting of The American Physical Society

The ³H(d, γ) Reaction at $E_{c.m.} \leq 300 \text{ keV}^1$ C.E. PARKER, C.R. BRUNE, T.N. MASSEY, J.E. O'DONNELL², A.L. RICHARD, D.B. SAYRE³, Ohio University — The ³H(d, γ)⁵He reaction has been measured using a 500-keV pulsed deuteron beam incident on a stopping titanium tritide target at the Edwards Accelerator Laboratory. The time-of-flight technique has been used to distinguish the γ -rays from neutrons in the bismuth germinate (BGO) γ -ray detector. A stilbene scintillator and an NE-213 scintillator have been used to detect the neutrons from the ³H(d, n) α reaction using both the pulse-shape discrimination and time-of-flight techniques. A newly designed target holder with a silicon surface barrier detector to simultaneously measure α -particles to normalize the number of neutrons, along with a new titanium tritide target, was incorporated for subsequent measurements. The γ -rays have been measured at laboratory angles of 0 °, 45 °, 90 °, and 135 °. Information about the γ -ray energy distribution for the unbound ground state and first excited state of ⁵He can be obtained experimentally by comparing the BGO data to Monte Carlo simulations. The ³H(d, γ)/³H(d, n) branching ratio has also been measured. Data analysis is currently underway for the subsequent measurements.

¹This work is supported in part by Lawrence Livermore National Laboratory and the U.S. D.O.E. (NNSA) through grant No. DE-NA0001837. ²deceased

³presently at Lawrence Livermore National Laboratory

Cody E. Parker Ohio University

Date submitted: 09 Jan 2015

Electronic form version 1.4