Abstract Submitted
for the APR15 Meeting of
The American Physical Society

Stokes’ Parameters Compared to Astrophysical Magnetic Turbulence Parameters MIRIAM FORMAN, Stony Brook University, ROBERT WICKS, NASA/Goddard Space Flight Center, SEAN OUGHTON, Waikato University, NZ, TIMOTHY HORBURY, Imperial College, UK — Since the divergence of a magnetic field is zero, the Fourier transform of fluctuations $\delta B(k)$ must be perpendicular to k, so $\delta B(k)$ has components only in the plane perpendicular to k. When there is also a mean field B, the obvious choice of coordinates to describe $\delta B(k)$ are the unit vectors t in the direction $B \times k$ and p in the direction $(B \times k) \times k$, called the “toroidal” and “poloidal” directions, respectively. Oughton, et al. (1997) as elucidated by Wicks et al. (2012) showed that the power spectral tensor $P_{ij}(k)$ of magnetic fluctuations is described by four scalar functions of k, multiplying the tensors $t:t, p:p, t:p + p:t$, and $t:p - p:t$ so that the Hermitian $P_{ij}(k) = \text{Tor}(k) t:t + \text{Pol}(k) p:p + C(k) [t:p + p:t] + i k H(k) [t:p - p:t]$. Since the electromagnetic fluctuations $\delta B(k)$ and $\delta E(k)$ in a beam of light are also perpendicular to their k, the four scalar functions of magnetic turbulence in astrophysics which scatters cosmic rays and allows their acceleration, are analogs of the Stokes’ parameters. Using Chandrasekhar’s (1960) notation $[I, Q, U, V]$: $I = \text{Tor} + \text{Pol} = \text{Tr}(P_{ij}(k)); Q = \text{Tor-Pol}; U = C$; we speculate that V corresponds to magnetic helicity kH in turbulence. We are studying projections of $P_{ij}(k)$ observed by spacecraft in the solar wind.

Miriam Forman
Stony Brook University

Date submitted: 09 Jan 2015

Electronic form version 1.4