Vector and Axial Vector Pion Form Factors

MICHAEL VITZ, Univ of Virginia, PEN COLLABORATION — Radiative pion decay $\pi^+ \rightarrow e^+\nu\gamma$ (RPD) provides critical input to chiral perturbation theory (χPT). Aside from the uninteresting “inner bremsstrahlung” contribution from QED, the RPD rate contains “structure dependent” terms given by F_V and F_A, the vector and axial-vector pion form factors, respectively. The two appear in the decay rate in combinations $F_V - F_A$ and $F_V + F_A$, i.e., in the so-called SD^- and SD^+ terms, respectively. The latter has been measured to high precision by the PIBETA collaboration. We report on the analysis of new data, measured by the PEN collaboration in runs between 2008 and 2010 at the Paul Scherrer Institute, Switzerland. We particularly focus on the possibility of improvement in the determination of the SD^- term. Precise determinations of F_V and F_A test the validity of the CVC hypothesis, provide numerical input for the $l_9 + l_{10}$ terms in the χPT lagrangian, and constrain potential non-$(V - A)$ terms, such as a possible tensor term F_T.

1 NSF grants PHY-0970013, 1307328, and others.
3 http://pen.phys.virginia.edu