Possibility of vibrationally resolved cross section measurements for low energy charge transfer in $\text{H} + \text{H}_2^+$

C.I. GUILLEN, R.A. STROM, J.A. TOBAR, D.I. PANCHENKO, V.M. ANDRIANARIJAONA, Department of Physics, Pacific Union College, Angwin, CA 94508 — Charge transfer (CT) in $\text{H} + \text{H}_2^+ \rightarrow \text{H}^+ + \text{H}_2$ has fundamental implications because it involves the smallest atomic ion, atom, molecular ion, and molecule possible. The current merged-beam apparatus at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, can reliably create and access low collision energies; the existing ion-atom merged beams apparatus there is currently able to benchmark the CT of these fundamental systems at energies below 0.1eV/u (Phys. Rev. A 84, 062716, 2011). A strong contribution from $v_i = 2$ is observed, however, the data analysis still suffers from the lack of information on the vibrational state distribution of H_2^+. We are exploring the possibility of inserting a three-dimensional imaging technique at the end station of the ORNL apparatus in order to measure the vibrational state distribution of H_2^+ that are produced by the electron cyclotron resonance (ECR) ion source. Discussion of our initial design for the insertion of this technique in the aforementioned system will be presented here.

1Work supported by the National Science Foundation under Grant No. PHY-1068877

C. I. Guillen
Department of Physics, Pacific Union College, Angwin, CA 94508