Measurement of the Charge and Light Yield of Low Energy Nuclear Recoils in Liquid Xenon at Different Electric Fields1 MATTHEW ANTHONY, ELENA APRILE, PATRICK DE PERIO, LUKE GOETZKE, ZACH GREENE, QING LIN, MARCELLO MESSINA, GUILLAUME PLANTE, ALFIO RIZZO, YUN ZHANG, Columbia University — Dual-phase liquid xenon detectors continue to lead in the search for the direct detection of dark matter. Characterization of the response of liquid xenon to low energy (≤ 20 keV) nuclear recoils is essential to establish the sensitivity of these detectors to dark matter. The neriX detector at Columbia University is a dual-phase time projection chamber that is optimized for simultaneous measurements of light and charge from these low-energy interactions. A coincidence technique is employed to extract the light and charge yield from nuclear recoils in liquid xenon as a function of energy deposited and applied electric field. In this talk, we will present preliminary results from the light and charge yield measurements.

1We acknowledge continued support of the XENON Dark Matter program at Columbia University by the National Science Foundation

Matthew Anthony
Columbia University

Date submitted: 07 Jan 2016

Electronic form version 1.4