Project 8: Single-Electron Spectroscopy via Relativistic Cyclotron Radiation LUIZ DE VIVEIROS, Univ of California - Santa Barbara, PROJECT 8 COLLABORATION — The Project 8 experiment seeks to determine the neutrino mass via the precise measurement of the electron energy in beta decays. We have developed a novel technique called Cyclotron Radiation Emission Spectroscopy (CRES), which allows single electron detection and characterization through the measurement of cyclotron radiation emitted by magnetically-trapped electrons produced by a gaseous radioactive source. The advantages of this technique include scalability, excellent energy resolution, and low backgrounds. A prototype using a waveguide-coupled 83mKr source in a 1 T magnetic field was constructed, and used to demonstrate the viability of this technique. We have recently reported the first observation and measurement of single-electron cyclotron radiation, emitted by the internal conversion electrons (at 17.8 keV and 30.4 keV) released in the decay of 83mKr. We present the latest results of the ongoing prototype run, with a focus on signal detection and analysis techniques leading to an improved energy resolution of $O(1 \text{ eV})$.

Luiz de Viveiros
Univ of California - Santa Barbara

Date submitted: 07 Jan 2016