Kludge modified gravity inspiral-merger-ringdown waveforms: Testing gravitational-wave tests of general relativity

NATHAN JOHNSON-MCDANIEL, ABHIRUP GHOSH, ARCHISMAN GHOSH, ICTS-TIFR, ANURADHA SAMAJDAR, IISER Kolkata, PARAMESWARAN AJITH, ICTS-TIFR, WALTER DEL POZZO, University of Birmingham — We describe a variety of self-consistent modifications of the effective-one-body framework that yield kludge modified gravity inspiral-merger-ringdown (IMR) waveforms. These waveforms do not correspond to any particular modified theory of gravity, but offer parametrized deviations from general relativity in various regimes. They can thus be used to test the performance of various gravitational wave tests of general relativity (GR). As an example, we introduce the IMR consistency test, which tests for consistency between the estimations of the final mass and spin from the inspiral and merger-ringdown portions of a binary black hole waveform. We show that for reasonable source parameters and SNRs in Advanced LIGO, this test is able to detect a deviation from GR with high confidence for certain modifications of the GR energy flux that are not constrained by observations of the double pulsar. We also consider the performance of a parameterized test of GR on these kludge modified gravity waveforms.

Nathan Johnson-McDaniel
ICTS-TIFR

Date submitted: 08 Jan 2016