The Nuclear Physics of Type Ia Supernovae

EDWARD BROWN, Michigan State University

Type Ia supernovae (SNe Ia) are the thermonuclear incineration of white dwarfs, which are the evolutionary terminus of low-mass stars; these supernovae are a primary source of iron in the universe and the premier distance indicator for cosmological studies. Current and future observational surveys are uncovering tantalizing clues about the as-yet-unknown progenitors of these explosions. In this talk, I shall review the nuclear physics of the explosion, with a particular emphasis on the role of weak interactions. Electron captures during the pre-explosive “simmering” and the explosion make the nucleosynthetic yields more neutron-rich. This provides in principle a way to constrain the nature of the progenitor from observations. I shall also highlight recent experimental constraints on electron-capture rates and prospects for further experimental studies, such as at the Facility for Rare Isotope Beams.

1Support by the National Science Foundation under Grant No. PHY-1430152 (JINA Center for the Evolution of the Elements) is gratefully acknowledged.