Revalidation of the Isobaric Multiplet Mass Equation for the $A=20$ quintet

BRENT GLASSMAN, MSU/NSCL, D. PEREZ-LOUREIRO, NSCL, C. WREDE, MSU/NSCL, J. ALLEN, D. BARDYAN, M. BENNETT, Notre Dame University, A. BROWN, MSU/NSCL, K. CHIPPS, M. FEBBRARO, ORNL/UT knoxville, CATHLEEN FRY, MSU/NSCL, O. HALL, M. HALL, Notre Dame University, S. LIDDICK, MSU/NSCL, P. O’MALLEY, Notre Dame University, W. ONG, MSU/NSCL, S. PAIN, ORNL, S. SCHWARTZ, MSU/NSCL, P. SHIDLING, Texas AM, H. SIMS, University of Surrey, P. THOMPSON, ORNL/UT knoxville, E. ZHANG, MSU/NSCL — An unexpected breakdown of the Isobaric Multiplet Mass Equation (IMME) for the $A=20$, $T=2$ quintet was recently reported based on a precise measurement of the ^{20}Mg mass and adopted data on the other members. The adopted value for ^{20}Na presented the greatest deviation from the IMME fit and was based on relatively imprecise beta delayed proton decay measurements. We used the superallowed $0^+ \to 0^+$ beta decay of ^{20}Mg to feed the lowest $T=2$ state in ^{20}Na, and the high purity germanium detector array SeGA to detect its gamma-ray de-excitation for the first time. Using the gamma-ray energies, we were able to precisely measure the excitation energy to be $6498.4 \pm 0.2_{\text{stat}} \pm 0.4_{\text{syst}}$ keV. By incorporating this newly measured value we find that the IMME is revalidated.

\footnote{We gratefully acknowledge the NSCL staff for technical assistance and for providing the ^{20}Mg beam. This work was supported by the National Science Foundation (USA) under Grants No. PHY-1102511, No. PHY-1419765, and No. PHY-1404442.}

Brent Glassman
MSU/NSCL

Date submitted: 08 Jan 2016

Electronic form version 1.4