APR16-2016-000764

Abstract for an Invited Paper for the APR16 Meeting of the American Physical Society

Precise test of the unitarity of the CKM matrix via superallowed nuclear beta decay HYO-IN PARK, Texas AM University

Superallowed $0^+ \rightarrow 0^+$ nuclear beta decay between isospin T = 1 analogue states is a sensitive probe for studying the fundamental properties of the weak interaction. Today, the most precise measurements of the decay strengths (or ft values) of fourteen superallowed transitions, ranging from ¹⁰C to ⁷⁴Rb, provide a direct determination of the vector coupling constant G_V , and lead to the most precise value of V_{ud} , the up-down quark-mixing element of the Cabbibo-Kobayashi-Maskawa (CKM) matrix. When V_{ud} is combined with the other top-row elements, V_{us} and V_{ub} , the sum of squares of the top-row elements of the CKM matrix satisfies the unitarity condition at the level of $\pm 0.06\%$.¹ The impact of this result on searches for new physics beyond the Standard Model motivates further work to improve even further the precision of the CKM-matrix unitarity sum. Our current focus is on measurements to constrain the uncertainty in calculations of the isospin-symmetry-breaking corrections needed to determine V_{ud} from the experimental data. This can be achieved with high-precision comparisons of the mass-38 pair, ³⁸Ca \rightarrow ^{38m}K and ^{38m}K \rightarrow ³⁸Ar, and our progress on measuring ⁴²Ti decay. The measured ratio of the mirror ft values for A = 38 agrees well with the corrections currently used, and points the way to even tighter constraints on the unitarity of the CKM matrix. If the three mirror pairs, with A = 26, A = 34 and A = 42 confirm and strengthen our present conclusion, it will become possible to shrink the systematic uncertainty on V_{ud} , reduce the uncertainty on the CKM-matrix unitarity sum, and further constrain the scope for possible extensions to the Standard Model.

¹J.C. Hardy and I.S. Towner, Phys. Rev. C **91**, 025501 (2015).