Branching ratio for the superallowed beta-decay of 10C TOMMI ERONEN, M. BENCOMO, L. CHEN, J.C. HARDY, V. HORVAT, V. IACOB, N. NICA, H.I. PARK, B. ROEDER, A. SAASTAMOINEN, Cyclotron Institute, Texas A&M University, College Station, Texas — Superallowed β decays play a key role in testing the Standard Model of Particle Physics. These decays occur between nuclear analog states having spin-parity of 0^+ and isospin $T = 1$. Currently, and in the foreseeable future, they offer the most accurate value for the V_{ud} matrix element of the Cabibbo-Kobayashi-Maskawa quark mixing matrix. Each superallowed transition is characterized with an F_t value combining both experimental and theoretical quantities. We have just made a preliminary new measurement of the 10C branching ratio, which currently is the least precisely known quantity for any of the “traditional nine” superallowed transitions. Furthermore, 10C is the only case that appears to have its corrected F_t value outside the world average value, which could be explained with the existence of a scalar current. We performed the branching-ratio measurement with a $\beta-\gamma$ coincidence setup using a scintillator for β and an HPGe with $\pm0.15\%$ calibrated relative efficiency for γ detection. Since the branching ratio is obtained from the ratio of intensities of 718 keV and 1022 keV γ lines, most systematic uncertainties cancel out. I will show an overview of the experiment and preliminary results.