Abstract Submitted for the APR17 Meeting of The American Physical Society

Observation of the ⁶⁰Fe Nucleosynthesis-Clock Isotope in Galactic Cosmic Rays¹ W.R. BINNS, M.H. ISRAEL, Washington University, E.R. CHRISTIAN, Goddard Space Flight Center, A.C. CUMMINGS, California Institute of Technology, G.A. DE NOLFO, Goddard Space Flight Center, K.A. LAVE, Washington University, R.A. LESKE, R.A. MEWALDT, E.C. STONE, California Institute of Technology, T.T. VON ROSENVINGE, Goddard Space Flight Center, M.E. WIEDENBECK, Jet Propulsion Laboratory, California Institute of Technology — We have measured the abundance of ⁶⁰Fe, a radioactive isotope in cosmic rays that serves as a clock to infer an upper limit on the time between nucleosynthesis in supernovae and cosmic ray acceleration. The ACE-CRIS instrument has collected $3.55 \ 10^5$ iron nuclei from which we have resolved 15^{60} Fe nuclei. From this a 60 Fe/ 56 Fe source ratio of (7.5 2.9) 10^{-5} is obtained. The detection of supernovaproduced ⁶⁰Fe in cosmic rays implies that the time required for acceleration and transport to Earth does not greatly exceed the 60 Fe half-life of 2.6 Myr and that the 60 Fe source distance does not greatly exceed the distance cosmic rays can diffuse over this time, < 1 kpc. A natural place for ⁶⁰Fe origin is in nearby clusters of massive stars.

¹This research is supported by NASA under Grant NNX13AH66G

W Binns Washington Univ

Date submitted: 01 Oct 2016

Electronic form version 1.4