Abstract Submitted for the APR17 Meeting of The American Physical Society

Constraining the Polarized Gluon Distribution Through Di-jet Measurements at $\sqrt{s}=510$ GeV at STAR DANIEL OLVITT, JR, Temple Univ, STAR COLLABORATION — The production of jets from polarized p+p collisions at STAR is dominated by quark-gluon and gluon-gluon scattering. The di-jet double spin asymmetry (A_{LL}) is sensitive to the polarized gluon distribution (ΔG) . Di-jets are also advantageous because the parton momentum fraction, x, of initial partons may be reconstructed to first order from the final state measurements. Both jet and di-jet A_{LL} measurements at $\sqrt{s}=200$ GeV have helped to constrain ΔG to values of x ≈ 0.05 . In 2012, data were collected at $\sqrt{s}=510$ GeV in order to probe lower values of x. Jet and di-jet preliminary A_{LL} results have been released and will soon be incorporated into theoretical fits. In 2013, data were also collected at $\sqrt{s}=510$ GeV. An update on the di-jet A_{LL} measurement using polarized p+p data collected at STAR during 2013, with an estimated 250 pb⁻¹ of integrated luminosity will be presented.

Daniel Olvitt, Jr Temple Univ

Date submitted: 29 Sep 2016 Electronic form version 1.4