Abstract Submitted for the APR17 Meeting of The American Physical Society

System Size and Shape Dependence of the Viscous Damping of Anisotropic Flow¹ NISEEM ABDELRAHMAN, Stony Brook university — We present recent STAR measurements of the anisotropic flow coefficients v_n (n = 1-6) in Au+Au, Cu+Cu, Cu+Au collisions at $\sqrt{s_{NN}} = 200$ GeV and U+U collisions at $\sqrt{s_{NN}} = 193$ GeV. For a given system, the differential v_n measurements indicate acoustic scaling patterns which reflect the detailed dependence of v_n on collision-system size and eccentricity (ε_n). These measurements constrain the viscous coefficient which encodes the specific shear viscosity η/s . Our measurements show that all the collision-systems give the same viscous coefficient after scaling-out the collision-system size and eccentricity.

¹For the STAR Collaboration

Niseem Abdelrahman Stony Brook university

Date submitted: 29 Sep 2016 Electronic form version 1.4