Spontaneous mass generation and the small dimensions of the
Standard Model gauge groups $U(1)$, $SU(2)$ and $SU(3)$

FELIPE J. LLANES-ESTRADA, Univ. Complutense Madrid, GUILLERMO GARCA, JESS GUERRERO ROJAS, UCM — The gauge symmetry of the Standard Model is $U(1) \times SU(2)_L \times SU(3)$ for unknown reasons. One aspect that can be addressed is the low dimensionality of all its subgroups. Why not much larger groups like $SU(7)$ or for that matter, $SP(38)$ or E_7? We observe that fermions charged under large groups acquire much bigger dynamical masses, all things being equal at a high e.g. GUT scale, than ordinary quarks. Should such multicharged fermions exist, they are too heavy to be observed today and have either decayed early on (if they couple to the rest of the Standard Model) or become relicual dark matter (if they don’t). The result follows easily from strong antiscreening of the running coupling for the larger group together with scaling properties of the Dyson-Schwinger equation for the fermion mass.