Leptonic flavor violation in the Higgs sector at the LHC

BRENT MCCOY, CHUNG KAO, University of Oklahoma, WEI-SHU HOU, National Taiwan University, MASAYA KOHDA, Nagoya University, AMARJIT SONI, Brookhaven National Lab — We present the discovery potential of \(pp \rightarrow \phi^0 \rightarrow \tau \mu + X \) at the Large Hadron Collider (LHC), with \(\phi^0 = h^0, H^0, A^0 \). We choose a general Two Higgs Doublet Model (2HDM) with non-negligible flavor changing couplings in the hadronic sector, in which \(\phi^0 \) couples to \(tc \). Current data favors the alignment limit of a 2HDM where \(\sin(\beta - \alpha) \approx 1 \), which can enhance leptonic couplings to the light Higgs boson and might provide an observable flavor changing cross-section in that sector. We study the \(\phi^0 \rightarrow \tau \mu \) channel for a range of \(\cos(\beta - \alpha) \) and \(\rho_{\tau\mu} \) values that can be consistent with the CMS excess in Run-1 and account for dominant physics background with realistic acceptance cuts at \(\sqrt{s} = 13 \) TeV and 14 TeV.

\(^1\)U.S. Department of Energy and OU Supercomputing Center for Education and Research

Brent McCoy
University of Oklahoma

Date submitted: 30 Sep 2016

Electronic form version 1.4