Abstract Submitted for the APR17 Meeting of The American Physical Society

Precision Cross Sections Measurement of 56 Fe(n,n γ) at 14.1 MeV using Associated Particle Neutron Elemental Imaging Technique HAOYU WANG, DAVID KOLTICK, Purdue University — Integral production cross sections for 846.8 keV and 1238.3 keV prompt gamma rays from 14.1 MeV neutrons interactions on ⁵⁶Fe and are reported, using Associated Particle Neutron Elemental Imaging technique. The experimental technique involves: (1) The development of a VME standard high speed DAQ system and a MATLAB parallel cluster for offline signal analysis with full control of data flow; (2) The advantage of the <1.5ns coincidence timing resolution between the neutron production and the gamma ray detection to reject noise; (3) A large 30% solid angle gamma ray coverage by an array of NaI(Tl) detectors. The neutron flux is measured through detecting the associated alpha-particle from the D-T fusion reaction in the neutron generator. Present cross section measurements using other techniques with limited timing resolution and solid angle coverage are in agreement at neutron energies lower than 6 MeV. At higher neutron energies reported results can disagree by more than 20%. This more accurate technique presented can distinguish between the differences in the reported results based on pulse-mode neutron source and neutron time-of-flight techniques, at higher neutron energies.

> Haoyu Wang Purdue University

Date submitted: 02 Oct 2016

Electronic form version 1.4