Chiral effective-field theory of the nucleon spin structure1

VLADIMIR PASCALUTSA, University of Mainz

I will review the recent chiral EFT calculations of the nucleon (spin) structure functions at low Q^2, confronted with the Jefferson Lab measurements. The moments of the structure functions correspond with various polarizabilities, and I will explain why one of them — δ_{LT} — is especially interesting. I will also discuss how the spin structure functions at low Q enter in the atomic calculations of the hyperfine splittings and how they are impacting the ongoing experimental program at PSI (Switzerland) to measure the ground-state hyperfine splitting of muonic hydrogen.

1Partially supported by the Deutsche Forschungsgemeinschaft (DFG) through the Collaborative Research Center SFB 1044 [The Low-Energy Frontier of the Standard Model]