Abstract Submitted for the APR18 Meeting of The American Physical Society

Sample variance in the local measurements of the Hubble constant HAO-YI WU, Ohio State Univ - Columbus, DRAGAN HUTERER, University of Michigan — The current > 3σ tension of the Hubble constant H_0 is one of the most highly debated issues in cosmology. While local distance ladder indicates $H_0^{\text{loc}} \approx 73 \text{ km s}^{-1}\text{Mpc}^{-1}$, cosmic microwave background points to $H_0^{\text{CMB}} \approx$ $67 \text{ km s}^{-1}\text{Mpc}^{-1}$. We explore to which extent this tension can be alleviated by the sample variance in the local measurements. Using large-volume cosmological simulations and taking into account the inhomogeneous selection of type Ia supernovae, we find $\sigma(H_0^{\text{loc}}) = 0.31 \text{ km s}^{-1}\text{Mpc}^{-1}$, which is too small to account for the current tension of 6 km s $^{-1}\text{Mpc}^{-1}$. To explain the current tension would require an underdense region of 150 Mpc with $\delta \approx -0.8$, which is highly unlikely in a Λ CDM universe and also violates existing observational constraints.

> Hao-Yi Wu Ohio State Univ - Columbus

Date submitted: 04 Jan 2018

Electronic form version 1.4