Abstract Submitted for the APR18 Meeting of The American Physical Society

Intruder Structure in N=21, ³⁸Cl Isotope¹ REBEKA SUL-TANA LUBNA, ELIZABETH RUBINO, SAMUEL TABOR, VANDANA TRI-PATHI, MARIA ANASTASIOU, BENJAMIN ASHER, LAGY BABY, JONATHAN BARON, DAVID CAUSSYN, DAVID CLARKE, JESUS PERELLO, KONSTANTI-NOS KRAVVARIS, NABIN RIJAL, KALISA VILLAFANA, ALEXANDER VOLYA, Florida State Univ, JAMES ALLMOND, Oak Ridge National Laboratory — Excited states of the 38 Cl isotope were populated by the 26 Mg(18 O, $\alpha pn\gamma$) 38 Cl fusion evaporation reaction at $E_{lab} = 50$ MeV. The ¹⁸O beam accelerated by a Tandem accelerator at John. D. Fox laboratory, Florida State University, was incident on an enriched ²⁶Mg target. Four clover detectors and one single crystal HPGe detector were used in order to detect the de-exciting γ rays, where a $E - \Delta E$ detector was used to select the charged particles emitted from the compound nucleus ⁴⁴Ca. The $\gamma - \gamma$ coincidence method, along with the coincidence with charged particles was employed in order to assign new γ rays in ³⁸Cl and to verify the existing ones. The experimental observations will be compared to the shell model calculations with a new interaction currently being developed by the Florida State University Nuclear Physics group.

¹This material is based upon work supported by the U.S. National Science Foundation under grant No. 1401574(FSU) and 1712953(FSU) and also by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract No. DE-AC05-00OR22725(O

Rebeka Sultana Lubna Florida State Univ

Date submitted: 05 Jan 2018 Electronic form version 1.4