Limits on the Variation of 54Mn and 137Cs Nuclear Decay Parameters due to Nuclear Reactor on-off Cycling DAVID KOLTICK, SHIH-CHIEH LIU, Purdue Univ, JONATHAN NISTOR, JORDAN HEIM, TechSource Inc. — An experiment has been conducted to search for possible variation of the nuclear decay lifetime parameters in the electron capture decay of 54Mn and the beta decay of 137Cs due to an influence of the reactor $\bar{\nu}$ flux at the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). The samples were exposed to approximately equal, reactor-on periods of 28 days of anti-neutrino flux at $\sim 3 \times 10^{12} \bar{\nu} \text{cm}^{-2} \text{sec}^{-1}$ and reactor-off periods. The variation limits are set by comparing the decay rate parameters as a function of the HFIR on and off periods. Equivalent cross section limits are set on variations assuming a linear relationship between the flux exposure and the induced nuclear decay parameter variation. Measuring the decay rate requires both the detector and environment be stable over the full-time period of the experiment. A High Purity Germanium spectrometer, sensitive to radiation from 3-keV to over 3-MeV, has been built to measure radioactive decay constants to a level of $10^{-5} \sim 10^{-6}$ at a location only 6 meters from the HFIR core. Such accuracy requires an understanding of the background, signal-processing algorithms, and both the double and triple event pile-up in the observed spectrum.

David Koltick
Purdue Univ

Date submitted: 10 Jan 2018
Electronic form version 1.4