Nucleosynthesis COstraints on the Explosion Mechanism for Type IA Supernovae1 GRANT MATHEWS, Univ of Notre Dame, KANJI MORI, TOSHITAKA KAJINO, NAOJ, TOSHIO SUZUKI, Nihon U., PETER GARNAVICH, Univ of Notre Dame, ROLAND DIEHL, MPI, SHING-CHI LEUNG, KENICHI NOMOTO, IMPU, MICHAEL FAMIANO, WMU — We consider observational constraints from iron-group elemental and isotopic ratios, to compare with various models. The nucleosynthesis is sensitive to highest white-dwarf central densities. Hence, nucleosynthesis yields can distinguish high-density Chandrasekhar-mass models from lower-density burning models such as white-dwarf mergers. We discuss results of post-processing nucleosynthesis from a number of representative models. These include 1D explosion models (de
dagration and/or delayed detonation models) along with 2D and 3D explosion models (including de
dagration, delayed-detonation, or a violent merger models). We identify some trends in observations and the models. We compare the models with elemental and isotopic rations from two observed supernovae and three supernova remnants. We find that the models and data tend to fall in two groups. In one group low-density cores such as in 3D merger or de
dagration models are most consistent with the nucleosynthesis data, while the other group is best identified with higher-density cores such as in single-degenerate 1D delayed detonation models. Hence, we postulate that both types of environments contribute nearly equally to observed SNIa.

1Work at the University of Notre Dame supported by the U.S. Department of Energy under Nuclear Theory Grant DE-FG02-95-ER40934

Grant Mathews
Univ of Notre Dame

Date submitted: 18 Jan 2018