APR18-2018-000731

Abstract for an Invited Paper for the APR18 Meeting of the American Physical Society

Coupled-clusters and quantum computing¹ THOMAS PAPENBROCK, Univ of Tennessee, Knoxville

This talk presents predictions from coupled-cluster calculations of rare isotopes and first results from quantum computing an atomic nucleus.

Rare doubly-magic nuclei play an important role because they determine the structure of entire regions in the nuclear chart. In recent years, the computation of rare isotopes such as 48,52,54 Ca, 78 Ni, and 100 Sn and their neighbors – based on interactions from effective field theories of quantum chromodynamics² and using controlled approximations only³ – led to predictions for neutron skins⁴ and the evolution of shell structure in isotopes of calcium⁵, nickel⁶, and tin⁷.

Quantum computers promise to reduce the computational complexity of simulating quantum many-body systems from exponential to polynomial. Very recently, quantum computing devices have started to solve small scale, but real-world many-body problems in chemistry and magnetism⁸. This talk presents the quantum computation of the deuteron via cloud servers⁹. This is a first step towards scalable nuclear structure computation on a quantum processor unit via the cloud, and our results shed light on how to map scientific computing applications onto nascent quantum devices.

¹This work is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under grants DE-FG02-96ER40963, DE-SC0008499, and DE-SC0018223.

²E. Epelbaum, H.-W. Hammer, and U.-G. Meiner, Rev. Mod. Phys. **81**, 1773 (2009); R. Machleidt and D. R. Entem, Phys. Rep. **503**, 75 (2011); A. Ekström et al., Phys. Rev. C **91**, 051301 (2015).

³B. R. Barrett, P. Navratil, and J. P. Vary, Prog. Part. Nucl. Pays. **69**, 131 (2013); G. Hagen et al., Rep. Prog. Phys. **77**, 096302 (2014); T. A. Lähde et al., Phys. Lett. B **732**, 110 (2014); H. Herbert et al., Phys. Rep. **621**, 165 (2016).

⁴G. Hagen et al., Nature Physics **12**, 186 (2016).

- ⁵G. Hagen et al., Phys. Rev. Lett. **109**, 032502 (2012).
- ⁶G. Hagen, G. R. Jansen, and T. Papenbrock, Phys. Rev. Lett. **117**, 172501 (2016).
- ⁷T. D. Morris et al., arXiv:1709.02786 (2017).
- ⁸P. J. J. O'Malley et al., Phys. Rev. X 6, 31007 (2016); A. Kandala et al., Nature 549, 242 (2017).
- ⁹E. F. Dumitrescu et al., arXiv:1801.03897 (2018).