Abstract Submitted for the APR18 Meeting of The American Physical Society

Estimating parameters and making predictions for nucleonnucleon scattering: the role of EFT truncation errors¹ DANIEL PHILLIPS, Ohio University, SARAH WESOLOWSKI, Salisbury University, RICHARD FURN-STAHL, The Ohio State University, BUQEYE (BAYESIAN UNCERTAINTY QUANTIFICATION: ERRORS FOR YOUR EFT) COLLABORATION — Determination of low-energy constants (LECs) and their uncertainties is essential for the robust application of chiral effective field theory (χ EFT). In this and the subsequent talk we take the first steps in applying our recently-developed Bayesian parameterestimation framework to NN potentials derived from χ EFT. Our Bayesian machinery consistently incorporates uncertainties from the EFT truncation in the estimation of the LECs that appear in the χ EFT NN potential. Combining the resulting LEC posteriors with truncation uncertainties for observables yields rigorous, statistically meaningful error bars for χ EFT predictions. The interplay of these two different sources of uncertainty as the order of the EFT calculation is increased will also be discussed.

¹Research supported by the NSF and DOE

Daniel Phillips Ohio Univ

Date submitted: 12 Jan 2018

Electronic form version 1.4