Abstract Submitted for the APR18 Meeting of The American Physical Society

 γ and π^0 -Hadron Correlations in Heavy Ion Collisions at the LHC with ALICE MICHAEL OLIVER, Yale University, ALICE COLLABORATION — In ultra-relativistic heavy ion collisions, direct photons from hard-scatters do not interact with the strongly interacting quark-gluon plasma, providing a clean probe into hard-scatter kinematics. Thus, correlations between direct photons and hadrons from an away-side jet are not subject to any trigger bias due to quenching of the trigger, allowing an unambiguous measurement of the modification of the away-side jet. A major background to these direct photon triggers are decay photons from high momentum neutral pions. The impact of correlations with these pions can be removed by measuring correlations with identified π^0 's at various transverse momenta, and using kinematics to convert these π^0 -hadron correlations to γ^{decay} hadron correlations to subtract these from inclusive γ -hadron correlations to find true γ^{direct} -hadron correlations. Using the ALICE Electromagnetic Calorimeter, we detect both the inclusive photon and π^0 triggers, and correlate them with charged hadrons detected using ALICE's Inner Tracking System and Time Projection Chamber to measure γ^{direct} -hadron correlations in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV. Progress towards this measurement will be shown.

> Michael Oliver Yale University

Date submitted: 12 Jan 2018

Electronic form version 1.4