Abstract Submitted for the APR18 Meeting of The American Physical Society

 β -delayed γ decay of ²⁰Mg and the ¹⁹Ne(p, γ)²⁰Na breakout reaction in Type I X-ray bursts¹ BRENT GLASSMAN, Michigan State Univ — Certain astrophysical environments such as thermonuclear outbursts on accreting neutron stars (Type-I X-ray bursts) are hot enough to allow for breakout from the Hot CNO hydrogen burning cycles to the rapid proton capture (rp) process. An important breakout reaction sequence is ${}^{15}O(\alpha,\gamma){}^{19}Ne(p,\gamma){}^{20}Na$ and the ${}^{19}Ne(p,\gamma){}^{20}Na$ reaction rate is expected to be dominated by a single resonance at 457 keV above the proton threshold in ²⁰Na. The reaction rate depends strongly on whether this ²⁰Na state at excitation energy 2647 keV has spin and parity of 1^+ or 3^+ . Previous ²⁰Mg $(J^{\pi}=0^+) \beta^+$ decay experiments have relied almost entirely on searches for β -delayed proton emission from this resonance in 20 Na to limit the log ft value. However there is a non-negligible γ -ray branch expected that must also be limited experimentally to determine the log ft value and constrain J^{π} . We have measured the β -delayed γ decay of ²⁰Mg to complement previous β -delayed proton decay work and provide the first complete limit based on all energetically allowed decay channels through the 2647 keV state. Our limit confirms a 1^+ assignment for this state is highly unlikely.

¹PACS24.80.+y, 21.10.Sf, 23.20.Lv, 27.30.+t

Brent Glassman Michigan State Univ

Date submitted: 14 Jan 2018

Electronic form version 1.4