The Frame-Independent Spatial Coordinate \tilde{z}: Implications for Light-Front Wave Functions, Deep Inelastic Scattering, Light-Front Holography, and Lattice QCD Calculations

GERALD A. MILLER, University of Washington, STANLEY J. BRODSKY, SLAC National Accelerator Laboratory, Stanford University — A general procedure for obtaining frame-independent, three-dimensional light-front coordinate-space wave functions is introduced. The third spatial coordinate, \tilde{z}, is the conjugate to the light-front momentum coordinate $x = \frac{k^+}{P^+}$ which appears in parton distributions. These light-front wave functions are used to derive a general expression for the quark distribution function of hadrons as an integral over the spatial separation $s = \tilde{z} - \tilde{z}'$, the frame-independent longitudinal distance (the Ioffe time) between virtual-photon absorption and emission in the forward virtual photon-hadron Compton scattering amplitude. The integrand, $g(s, x)$ of the quark distribution contains a factor of $\cos sx$ which remains significant for very large values of s at small x, thus demonstrating that the spatial extent of a proton in the longitudinal direction can be very large — a key feature of the Ioffe time. Specific examples using models derived from light-front holographic QCD exhibit a large extent in \tilde{z}.

Gerald A. Miller
University of Washington

Date submitted: 04 Jan 2020

Electronic form version 1.4