Abstract Submitted for the APR20 Meeting of The American Physical Society

Why are all I_{AA} distributions constant for away $p_{Ta} > 3 \text{ GeV/c}$ in di-hadron correlations with trigger $p_{Tt} < 20 \text{ GeV/c}$ in Relativistic Heavy Ion Central Collisions?¹ MICHAEL TANNENBAUM, Brookhaven National Laboratory — In Relativistic Heavy Ion Collisions at RHIC and LHC an I_{AA} distribution is the measurement in di-hadron correlations of the ratio of the A+A to p+p associated away particle transverse momentum (p_{Ta}) distributions for trigger particles with a given p_{Tt} . In all published measurements in Au+Au collisions at RHIC (c.m. energy 200 GeV) [PHENIX, PRL104, 252301 (2010)], [STAR, PLB760, 689 (2016)] and Pb+Pb collisions at LHC (c.m. energy 2.76 TeV) [ALICE, PLB763, 238 (2016)], the I_{AA} distribution decreases in the range $0 < p_{Ta} < 3 \text{ GeV/c}$ and then becomes constant out to the measurement limit $p_{Ta} < 20 \text{ GeV/c}$. One possibility discussed is that jet fragments with $p_{Ta} > 3 \text{ GeV/c}$ are sufficiently inside the jet cone that they don't lose energy by the BDMPSZ method [arXiv:hep-ph/0002198v2]

¹Supported by U.S. Department of Energy, Contract No. DE-SC0012704

Michael Tannenbaum Brookhaven National Laboratory

Date submitted: 07 Jan 2020

Electronic form version 1.4