Supernova Neutrino-process nucleosynthesis with neutrino self-interaction and MSW effects1 GRANT MATHEWS, University of Notre Dame, HEAMIN KO, Soongsil University, MYUNG-KI CHEOUN, Soongil University, EUNJA HA, Soongsil University, MOTOHIKO KUSAKABE, Beihang University, TAKEHITO HAYAKAWA, NQRST, HIROKAZU SASAKI, TOSHITAKA KAJINO, NAOJ, MASA-AKI HASHIMOTO, Kyushu University, MASAOMI ONO, RIKEN, MARK USANG, SATOSHI CHIBA, Tokyo Inst. Tech, KO NAKAMURA, Fukuoka Univ., ALEXEY TOLSTOV, KENICHI NOMOTO, IPMU, TOSHIHIKO KAWANO, LANL — The ν-process is a unique nucleosynthesis mechanism that only affects the abundances of some rare nuclei. There are, however, uncertainties due to the neutrino mass hierarchy, neutrino oscillations and the neutrino self-interaction. In this talk we discuss calculations of the abundances of 7Li, 11B, 92Nb, 98Tc, 138La, and 180Ta produced by the ν-process. We consider the modification both by the ν self-interaction near the neutrinosphere and the Mikheyev-Smirnov-Wolfenstein effect in the outer layers based upon time-dependent neutrino energy spectra from core-collapse supernova simulations. Abundances of 7Li and heavy isotopes 92Nb, 98Tc and 138La are reduced by a factor of ~ 2 by the ν-self-interaction. In contrast, 11B is relatively insensitive. We find that the abundance ratio of heavy to light nuclei, 138La/11B, is a robust probe of the neutrino mass hierarchy, and the normal mass hierarchy is more likely to be consistent with the solar meteoritic abundances.

1Work at the University of Notre Dame is supported by the U.S. Department of Energy under Nuclear Theory Grant DE-FG02-95-ER40934.