Elementary Particles from a Quantized Mackouse-Klein-Gordon (MKG) Gravitational Equation

NATHAN MACKOUSE, Temple University, EDWARD MACKOUSE1, Independent Research, P. O. Box 470, Furlong, PA 18925 — A Physical Model is presented for the Proton and Neutron. The Electron Antineutrino mass is calculated. E=Energy MeV, v=velocity/c, c=speed of light, mo sum of rest masses, md heavier boson inside rest mass down quark, mu smaller outside rest mass up quark, n=0,1,2 etc., spin=(2n+1)/2, r= radius meters, rotational velocity Hertz/second.

1. $E(2) = (2n+1)E(2)v(2)+(mo)(mo)$ (MKG) Equation: 2. solution 1. $E=(mo)/\sqrt{1-(2n+1)v(2)}$: Lepton equation: 3. solution 2. Mack version $E=mu/\sqrt{1-(2n+1)v(2)} + md/\sqrt{1-(2n+1)v(2)}$:

Proton 938.272; mu 107.590, E mu 707.878; md 191.692, E md 230.39: the neutrino rest mass can be used in dark matter calculations to explain gravitation as the momentum effects of a 4th state of matter.: Proton vu .988381, ru .59427E-16, vd .554746, rd .33541E-16, rotational velocity 4.9862E23: Magnetic moments, electromagnetic mass differences etc. can be performed for elementary particles.

1Retired Physicist who is starting to play again with physics with help from children. Nathan provides help with theory and Matthew a Temple University graduate provides computer help.