Abstract Submitted for the APR20 Meeting of The American Physical Society

The ⁷Be(α, γ)¹¹C Reaction Rate and Its Contribution to the Evolution of Population-III Stars ERIC ABOUD, Texas AM University — In the early stages of their lives, zero-metallicity stars undergo the proton-proton process until enough ¹²C is produced to start the CNO cycle. Due to the high energies needed for the main ¹²C production method (triple α process), low-mass main-sequence stars may not produce ¹²C before they collapse. The theoretical hot proton-proton chain may provide an alternate method through reaction chains. The specific chain of interest is the ⁷Be(α, γ)¹¹C(p, γ)¹²N(β^+, ν)¹²C reaction chain. Theoretical studies have hinted at the large contribution of the sub-alpha threshold state in ¹¹C to the reaction rate. A detailed study of the ⁷Be(α, γ)¹¹C reaction rate, using the analog ⁷Be(⁶Li, $d\gamma$)¹¹C transfer reaction, is being performed. The present work aims to experimentally determine the contribution of the sub-alpha threshold state to the reaction rate for the first time.

> Eric Aboud Texas A M University

Date submitted: 09 Jan 2020

Electronic form version 1.4